Aromātai
16
Tauwehe
2^{4}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{3+16\times 5-3^{3}}{7}\right)^{3}}{8^{2}}+2^{3}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{\left(\frac{3+80-3^{3}}{7}\right)^{3}}{8^{2}}+2^{3}
Whakareatia te 16 ki te 5, ka 80.
\frac{\left(\frac{83-3^{3}}{7}\right)^{3}}{8^{2}}+2^{3}
Tāpirihia te 3 ki te 80, ka 83.
\frac{\left(\frac{83-27}{7}\right)^{3}}{8^{2}}+2^{3}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
\frac{\left(\frac{56}{7}\right)^{3}}{8^{2}}+2^{3}
Tangohia te 27 i te 83, ka 56.
\frac{8^{3}}{8^{2}}+2^{3}
Whakawehea te 56 ki te 7, kia riro ko 8.
\frac{512}{8^{2}}+2^{3}
Tātaihia te 8 mā te pū o 3, kia riro ko 512.
\frac{512}{64}+2^{3}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
8+2^{3}
Whakawehea te 512 ki te 64, kia riro ko 8.
8+8
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
16
Tāpirihia te 8 ki te 8, ka 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}