Aromātai
-\frac{48}{125}=-0.384
Tauwehe
-\frac{48}{125} = -0.384
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\left(-\frac{1}{6}\right)^{2}}{\frac{5}{6}}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Tangohia te \frac{2}{3} i te \frac{1}{2}, ka -\frac{1}{6}.
\frac{\frac{\frac{1}{36}}{\frac{5}{6}}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Tātaihia te -\frac{1}{6} mā te pū o 2, kia riro ko \frac{1}{36}.
\frac{\frac{1}{36}\times \frac{6}{5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Whakawehe \frac{1}{36} ki te \frac{5}{6} mā te whakarea \frac{1}{36} ki te tau huripoki o \frac{5}{6}.
\frac{\frac{1}{30}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Whakareatia te \frac{1}{36} ki te \frac{6}{5}, ka \frac{1}{30}.
\frac{\frac{1}{30}-\frac{1}{3}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{-\frac{3}{10}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Tangohia te \frac{1}{3} i te \frac{1}{30}, ka -\frac{3}{10}.
\frac{-\frac{3}{10}}{\frac{1}{2}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Tātaitia te \sqrt[3]{\frac{1}{8}} kia tae ki \frac{1}{2}.
\frac{-\frac{3}{10}}{\frac{1}{2}+\left(\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
\frac{-\frac{3}{10}}{\frac{1}{2}+\frac{1}{4}\times \frac{9}{8}}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{-\frac{3}{10}}{\frac{1}{2}+\frac{9}{32}}
Whakareatia te \frac{1}{4} ki te \frac{9}{8}, ka \frac{9}{32}.
\frac{-\frac{3}{10}}{\frac{25}{32}}
Tāpirihia te \frac{1}{2} ki te \frac{9}{32}, ka \frac{25}{32}.
-\frac{3}{10}\times \frac{32}{25}
Whakawehe -\frac{3}{10} ki te \frac{25}{32} mā te whakarea -\frac{3}{10} ki te tau huripoki o \frac{25}{32}.
-\frac{48}{125}
Whakareatia te -\frac{3}{10} ki te \frac{32}{25}, ka -\frac{48}{125}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}