Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{6}+3\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{6}+3\sqrt{3}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\left(\sqrt{6}+3\sqrt{3}\right)\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{6}+3\sqrt{3} ki te \sqrt{3}.
\frac{\sqrt{3}\sqrt{2}\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{3}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{3\sqrt{2}+3\left(\sqrt{3}\right)^{2}}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{3\sqrt{2}+3\times 3}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3\sqrt{2}+9}{3}
Whakareatia te 3 ki te 3, ka 9.
\sqrt{2}+3
Whakawehea ia wā o 3\sqrt{2}+9 ki te 3, kia riro ko \sqrt{2}+3.