Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{4-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{3}.
\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{16-3}
Pūrua 4. Pūrua \sqrt{3}.
\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{13}
Tangohia te 3 i te 16, ka 13.
\frac{4\sqrt{5}+\sqrt{5}\sqrt{3}}{13}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{5} ki te 4+\sqrt{3}.
\frac{4\sqrt{5}+\sqrt{15}}{13}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.