Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{3}-3}{\sqrt{3}+3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{3-9}
Pūrua \sqrt{3}. Pūrua 3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{-6}
Tangohia te 9 i te 3, ka -6.
\frac{\left(\sqrt{3}-3\right)^{2}}{-6}
Whakareatia te \sqrt{3}-3 ki te \sqrt{3}-3, ka \left(\sqrt{3}-3\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-6\sqrt{3}+9}{-6}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-3\right)^{2}.
\frac{3-6\sqrt{3}+9}{-6}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12-6\sqrt{3}}{-6}
Tāpirihia te 3 ki te 9, ka 12.
-2+\sqrt{3}
Whakawehea ia wā o 12-6\sqrt{3} ki te -6, kia riro ko -2+\sqrt{3}.