Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{5}+2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}-2.
\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Whakaarohia te \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{5-4}
Pūrua \sqrt{5}. Pūrua 2.
\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{1}
Tangohia te 4 i te 5, ka 1.
\sqrt{3}\left(\sqrt{5}-2\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\sqrt{3}\sqrt{5}-2\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{3} ki te \sqrt{5}-2.
\sqrt{15}-2\sqrt{3}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.