Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-2\sqrt{3}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-\left(2\sqrt{3}\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-2^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\left(\sqrt{3}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-12}
Whakareatia te 4 ki te 3, ka 12.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{-10}
Tangohia te 12 i te 2, ka -10.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{2}-2 ki ia tau o \sqrt{2}-2\sqrt{3}.
\frac{2-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2-2\sqrt{6}-2\sqrt{2}+4\sqrt{3}}{-10}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.