Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\sqrt{2}-\left(\sqrt{2}\right)^{2}}{2\left(\sqrt{2}+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{2} ki te 4-\sqrt{2}.
\frac{4\sqrt{2}-2}{2\left(\sqrt{2}+1\right)}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4\sqrt{2}-2}{2\sqrt{2}+2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \sqrt{2}+1.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right)}
Whakangāwaritia te tauraro o \frac{4\sqrt{2}-2}{2\sqrt{2}+2} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{2}-2.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}\right)^{2}-2^{2}}
Whakaarohia te \left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{2^{2}\left(\sqrt{2}\right)^{2}-2^{2}}
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\left(\sqrt{2}\right)^{2}-2^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\times 2-2^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-2^{2}}
Whakareatia te 4 ki te 2, ka 8.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4}
Tangohia te 4 i te 8, ka 4.
\frac{8\left(\sqrt{2}\right)^{2}-8\sqrt{2}-4\sqrt{2}+4}{4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4\sqrt{2}-2 ki ia tau o 2\sqrt{2}-2.
\frac{8\times 2-8\sqrt{2}-4\sqrt{2}+4}{4}
Ko te pūrua o \sqrt{2} ko 2.
\frac{16-8\sqrt{2}-4\sqrt{2}+4}{4}
Whakareatia te 8 ki te 2, ka 16.
\frac{16-12\sqrt{2}+4}{4}
Pahekotia te -8\sqrt{2} me -4\sqrt{2}, ka -12\sqrt{2}.
\frac{20-12\sqrt{2}}{4}
Tāpirihia te 16 ki te 4, ka 20.
5-3\sqrt{2}
Whakawehea ia wā o 20-12\sqrt{2} ki te 4, kia riro ko 5-3\sqrt{2}.