Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ \sqrt{ 2 } \frac{ \sqrt{ 3 } }{ 2 } }{ \sqrt{ 6 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\sqrt{6}}
Tuhia te \sqrt{2}\times \frac{\sqrt{3}}{2} hei hautanga kotahi.
\frac{\sqrt{2}\sqrt{3}}{2\sqrt{6}}
Tuhia te \frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\sqrt{6}} hei hautanga kotahi.
\frac{\sqrt{2}\sqrt{3}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}\sqrt{3}}{2\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\sqrt{2}\sqrt{3}\sqrt{6}}{2\times 6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{6}\sqrt{6}}{2\times 6}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{6}{2\times 6}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
\frac{6}{12}
Whakareatia te 2 ki te 6, ka 12.
\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}