Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\sqrt{6}}
Tuhia te \sqrt{2}\times \frac{\sqrt{3}}{2} hei hautanga kotahi.
\frac{\sqrt{2}\sqrt{3}}{2\sqrt{6}}
Tuhia te \frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\sqrt{6}} hei hautanga kotahi.
\frac{\sqrt{2}\sqrt{3}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}\sqrt{3}}{2\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\sqrt{2}\sqrt{3}\sqrt{6}}{2\times 6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{6}\sqrt{6}}{2\times 6}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{6}{2\times 6}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
\frac{6}{12}
Whakareatia te 2 ki te 6, ka 12.
\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.