Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}\left(3x^{2}+15\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3}\times 3^{\frac{1}{2}} ki te 3x^{2}+15.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}=2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2\times 3^{\frac{1}{2}}x^{2}=2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}-10\times 3^{\frac{1}{2}}
Tangohia te 10\times 3^{\frac{1}{2}} mai i ngā taha e rua.
2\times 3^{\frac{1}{2}}x^{2}=2\sqrt{2}-\frac{28}{3}\times 3^{\frac{1}{2}}
Pahekotia te \frac{2}{3}\times 3^{\frac{1}{2}} me -10\times 3^{\frac{1}{2}}, ka -\frac{28}{3}\times 3^{\frac{1}{2}}.
2\sqrt{3}x^{2}=-\frac{28}{3}\sqrt{3}+2\sqrt{2}
Whakaraupapatia anō ngā kīanga tau.
x^{2}=\frac{-\frac{28\sqrt{3}}{3}+2\sqrt{2}}{2\sqrt{3}}
Mā te whakawehe ki te 2\sqrt{3} ka wetekia te whakareanga ki te 2\sqrt{3}.
x^{2}=\frac{\sqrt{6}-14}{3}
Whakawehe -\frac{28\sqrt{3}}{3}+2\sqrt{2} ki te 2\sqrt{3}.
x=\frac{i\sqrt{42-3\sqrt{6}}}{3} x=-\frac{i\sqrt{42-3\sqrt{6}}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}\left(3x^{2}+15\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3}\times 3^{\frac{1}{2}} ki te 3x^{2}+15.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}=2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}-2\sqrt{2}=\frac{2}{3}\times 3^{\frac{1}{2}}
Tangohia te 2\sqrt{2} mai i ngā taha e rua.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}-2\sqrt{2}-\frac{2}{3}\times 3^{\frac{1}{2}}=0
Tangohia te \frac{2}{3}\times 3^{\frac{1}{2}} mai i ngā taha e rua.
2\times 3^{\frac{1}{2}}x^{2}+\frac{28}{3}\times 3^{\frac{1}{2}}-2\sqrt{2}=0
Pahekotia te 10\times 3^{\frac{1}{2}} me -\frac{2}{3}\times 3^{\frac{1}{2}}, ka \frac{28}{3}\times 3^{\frac{1}{2}}.
2\sqrt{3}x^{2}-2\sqrt{2}+\frac{28}{3}\sqrt{3}=0
Whakaraupapatia anō ngā kīanga tau.
2\sqrt{3}x^{2}+\frac{28\sqrt{3}}{3}-2\sqrt{2}=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\sqrt{3}\left(\frac{28\sqrt{3}}{3}-2\sqrt{2}\right)}}{2\times 2\sqrt{3}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2\sqrt{3} mō a, 0 mō b, me -2\sqrt{2}+\frac{28\sqrt{3}}{3} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\sqrt{3}\left(\frac{28\sqrt{3}}{3}-2\sqrt{2}\right)}}{2\times 2\sqrt{3}}
Pūrua 0.
x=\frac{0±\sqrt{\left(-8\sqrt{3}\right)\left(\frac{28\sqrt{3}}{3}-2\sqrt{2}\right)}}{2\times 2\sqrt{3}}
Whakareatia -4 ki te 2\sqrt{3}.
x=\frac{0±\sqrt{16\sqrt{6}-224}}{2\times 2\sqrt{3}}
Whakareatia -8\sqrt{3} ki te -2\sqrt{2}+\frac{28\sqrt{3}}{3}.
x=\frac{0±4i\sqrt{14-\sqrt{6}}}{2\times 2\sqrt{3}}
Tuhia te pūtakerua o te 16\sqrt{6}-224.
x=\frac{0±4i\sqrt{14-\sqrt{6}}}{4\sqrt{3}}
Whakareatia 2 ki te 2\sqrt{3}.
x=\frac{i\sqrt{42-3\sqrt{6}}}{3}
Nā, me whakaoti te whārite x=\frac{0±4i\sqrt{14-\sqrt{6}}}{4\sqrt{3}} ina he tāpiri te ±.
x=-\frac{i\sqrt{42-3\sqrt{6}}}{3}
Nā, me whakaoti te whārite x=\frac{0±4i\sqrt{14-\sqrt{6}}}{4\sqrt{3}} ina he tango te ±.
x=\frac{i\sqrt{42-3\sqrt{6}}}{3} x=-\frac{i\sqrt{42-3\sqrt{6}}}{3}
Kua oti te whārite te whakatau.