Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{5}+3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}-3.
\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{\left(\sqrt{5}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{5-9}
Pūrua \sqrt{5}. Pūrua 3.
\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{-4}
Tangohia te 9 i te 5, ka -4.
\frac{\sqrt{2}\sqrt{5}-3\sqrt{2}}{-4}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{2} ki te \sqrt{5}-3.
\frac{\sqrt{10}-3\sqrt{2}}{-4}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-\sqrt{10}+3\sqrt{2}}{4}
Me whakarea tahi te taurunga me te tauraro ki te -1.