Aromātai
-\frac{\sqrt{7}}{3}-\frac{\sqrt{14}}{6}-\frac{7\sqrt{2}}{6}-\frac{1}{3}\approx -3.488775824
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{14}+2}{1-\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{7}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{1^{2}-\left(\sqrt{7}\right)^{2}}
Whakaarohia te \left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{1-7}
Pūrua 1. Pūrua \sqrt{7}.
\frac{\left(\sqrt{14}+2\right)\left(1+\sqrt{7}\right)}{-6}
Tangohia te 7 i te 1, ka -6.
\frac{\sqrt{14}+\sqrt{14}\sqrt{7}+2+2\sqrt{7}}{-6}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{14}+2 ki ia tau o 1+\sqrt{7}.
\frac{\sqrt{14}+\sqrt{7}\sqrt{2}\sqrt{7}+2+2\sqrt{7}}{-6}
Tauwehea te 14=7\times 2. Tuhia anō te pūtake rua o te hua \sqrt{7\times 2} hei hua o ngā pūtake rua \sqrt{7}\sqrt{2}.
\frac{\sqrt{14}+7\sqrt{2}+2+2\sqrt{7}}{-6}
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
\frac{-\sqrt{14}-7\sqrt{2}-2-2\sqrt{7}}{6}
Me whakarea tahi te taurunga me te tauraro ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}