Aromātai
\sqrt{2}\approx 1.414213562
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ \sqrt{ 1 \frac{ 2 }{ 3 } } }{ \sqrt{ \frac{ 5 }{ 6 } } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{\frac{3+2}{3}}}{\sqrt{\frac{5}{6}}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\sqrt{\frac{5}{3}}}{\sqrt{\frac{5}{6}}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{5}{6}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{5}{6}}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{5}{6}}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{\sqrt{15}}{3}}{\sqrt{\frac{5}{6}}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}}{\sqrt{6}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{6}}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{6}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{30}}{6}}
Hei whakarea \sqrt{5} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{15}\times 6}{3\sqrt{30}}
Whakawehe \frac{\sqrt{15}}{3} ki te \frac{\sqrt{30}}{6} mā te whakarea \frac{\sqrt{15}}{3} ki te tau huripoki o \frac{\sqrt{30}}{6}.
\frac{2\sqrt{15}}{\sqrt{30}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{2\sqrt{15}\sqrt{30}}{\left(\sqrt{30}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{15}}{\sqrt{30}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{30}.
\frac{2\sqrt{15}\sqrt{30}}{30}
Ko te pūrua o \sqrt{30} ko 30.
\frac{2\sqrt{15}\sqrt{15}\sqrt{2}}{30}
Tauwehea te 30=15\times 2. Tuhia anō te pūtake rua o te hua \sqrt{15\times 2} hei hua o ngā pūtake rua \sqrt{15}\sqrt{2}.
\frac{2\times 15\sqrt{2}}{30}
Whakareatia te \sqrt{15} ki te \sqrt{15}, ka 15.
\frac{30\sqrt{2}}{30}
Whakareatia te 2 ki te 15, ka 30.
\sqrt{2}
Me whakakore te 30 me te 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}