Tīpoka ki ngā ihirangi matua
Aromātai (complex solution)
Tick mark Image
Wāhi Tūturu (complex solution)
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{-1}}{\sqrt{-2-1}}
Tāpirihia te -2 ki te 1, ka -1.
\frac{i}{\sqrt{-2-1}}
Tātaitia te pūtakerua o -1 kia tae ki i.
\frac{i}{\sqrt{-3}}
Tangohia te 1 i te -2, ka -3.
\frac{i}{\sqrt{3}i}
Tauwehea te -3=3\left(-1\right). Tuhia anō te pūtake rua o te hua \sqrt{3\left(-1\right)} hei hua o ngā pūtake rua \sqrt{3}\sqrt{-1}. Hei tōna tikanga, ko te pūtake rua o -1 ko i.
\frac{i\sqrt{3}}{\left(\sqrt{3}\right)^{2}i}
Whakangāwaritia te tauraro o \frac{i}{\sqrt{3}i} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{i\sqrt{3}}{3i}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}}{3i^{0}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\sqrt{3}}{3\times 1}
Tātaihia te i mā te pū o 0, kia riro ko 1.
\frac{\sqrt{3}}{3}
Whakareatia te 3 ki te 1, ka 3.