Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{n}\sqrt{k-m}n}{1}=\frac{1}{m\times \frac{1}{n}}
Whakawehea ngā taha e rua ki te n^{-1}.
\sqrt{k-m}=\frac{1}{m\times \frac{1}{n}}
Mā te whakawehe ki te n^{-1} ka wetekia te whakareanga ki te n^{-1}.
\sqrt{k-m}=\frac{n}{m}
Whakawehe \frac{1}{m} ki te n^{-1}.
k-m=\frac{n^{2}}{m^{2}}
Pūruatia ngā taha e rua o te whārite.
k-m-\left(-m\right)=\frac{n^{2}}{m^{2}}-\left(-m\right)
Me tango -m mai i ngā taha e rua o te whārite.
k=\frac{n^{2}}{m^{2}}-\left(-m\right)
Mā te tango i te -m i a ia ake anō ka toe ko te 0.
k=m+\frac{n^{2}}{m^{2}}
Tango -m mai i \frac{n^{2}}{m^{2}}.