Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\times \frac{\sqrt{\frac{3\times 27}{2}}}{27}
Tuhia te \frac{3}{2}\times 27 hei hautanga kotahi.
6\times \frac{\sqrt{\frac{81}{2}}}{27}
Whakareatia te 3 ki te 27, ka 81.
6\times \frac{\frac{\sqrt{81}}{\sqrt{2}}}{27}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{81}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{81}}{\sqrt{2}}.
6\times \frac{\frac{9}{\sqrt{2}}}{27}
Tātaitia te pūtakerua o 81 kia tae ki 9.
6\times \frac{\frac{9\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{27}
Whakangāwaritia te tauraro o \frac{9}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
6\times \frac{\frac{9\sqrt{2}}{2}}{27}
Ko te pūrua o \sqrt{2} ko 2.
6\times \frac{9\sqrt{2}}{2\times 27}
Tuhia te \frac{\frac{9\sqrt{2}}{2}}{27} hei hautanga kotahi.
6\times \frac{\sqrt{2}}{2\times 3}
Me whakakore tahi te 9 i te taurunga me te tauraro.
6\times \frac{\sqrt{2}}{6}
Whakareatia te 2 ki te 3, ka 6.
\sqrt{2}
Me whakakore te 6 me te 6.