Aromātai
\sqrt{2}\approx 1.414213562
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ \sqrt{ \frac{ 3 }{ 2 } \times 27 } }{ 27 } \times 6
Tohaina
Kua tāruatia ki te papatopenga
6\times \frac{\sqrt{\frac{3\times 27}{2}}}{27}
Tuhia te \frac{3}{2}\times 27 hei hautanga kotahi.
6\times \frac{\sqrt{\frac{81}{2}}}{27}
Whakareatia te 3 ki te 27, ka 81.
6\times \frac{\frac{\sqrt{81}}{\sqrt{2}}}{27}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{81}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{81}}{\sqrt{2}}.
6\times \frac{\frac{9}{\sqrt{2}}}{27}
Tātaitia te pūtakerua o 81 kia tae ki 9.
6\times \frac{\frac{9\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{27}
Whakangāwaritia te tauraro o \frac{9}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
6\times \frac{\frac{9\sqrt{2}}{2}}{27}
Ko te pūrua o \sqrt{2} ko 2.
6\times \frac{9\sqrt{2}}{2\times 27}
Tuhia te \frac{\frac{9\sqrt{2}}{2}}{27} hei hautanga kotahi.
6\times \frac{\sqrt{2}}{2\times 3}
Me whakakore tahi te 9 i te taurunga me te tauraro.
6\times \frac{\sqrt{2}}{6}
Whakareatia te 2 ki te 3, ka 6.
\sqrt{2}
Me whakakore te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}