Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{2}\cos(45)}{\tan(60)}
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\frac{\frac{1}{2}\times \frac{\sqrt{2}}{2}}{\tan(60)}
Tīkina te uara \cos(45) mai i te ripanga uara pākoki.
\frac{\frac{\sqrt{2}}{2\times 2}}{\tan(60)}
Me whakarea te \frac{1}{2} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{\sqrt{2}}{2\times 2}}{\sqrt{3}}
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2\times 2\sqrt{3}}
Tuhia te \frac{\frac{\sqrt{2}}{2\times 2}}{\sqrt{3}} hei hautanga kotahi.
\frac{\sqrt{2}\sqrt{3}}{2\times 2\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{2\times 2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{2\times 2\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}}{2\times 2\times 3}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}}{4\times 3}
Whakareatia te 2 ki te 2, ka 4.
\frac{\sqrt{6}}{12}
Whakareatia te 4 ki te 3, ka 12.