Tīpoka ki ngā ihirangi matua
Whakaoti mō d
Tick mark Image
Whakaoti mō n (complex solution)
Tick mark Image
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(5+5+\left(n-1\right)d\right)n=390\times 2
Me whakarea ngā taha e rua ki te 2.
\left(10+\left(n-1\right)d\right)n=390\times 2
Tāpirihia te 5 ki te 5, ka 10.
\left(10+nd-d\right)n=390\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
10n+dn^{2}-dn=390\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 10+nd-d ki te n.
10n+dn^{2}-dn=780
Whakareatia te 390 ki te 2, ka 780.
dn^{2}-dn=780-10n
Tangohia te 10n mai i ngā taha e rua.
\left(n^{2}-n\right)d=780-10n
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\frac{\left(n^{2}-n\right)d}{n^{2}-n}=\frac{780-10n}{n^{2}-n}
Whakawehea ngā taha e rua ki te n^{2}-n.
d=\frac{780-10n}{n^{2}-n}
Mā te whakawehe ki te n^{2}-n ka wetekia te whakareanga ki te n^{2}-n.
d=\frac{10\left(78-n\right)}{n\left(n-1\right)}
Whakawehe 780-10n ki te n^{2}-n.