Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\times 20+10i\times 20}{5+10i+20}
Whakareatia 5+10i ki te 20.
\frac{100+200i}{5+10i+20}
Mahia ngā whakarea i roto o 5\times 20+10i\times 20.
\frac{100+200i}{5+20+10i}
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o 5+10i me te 20.
\frac{100+200i}{25+10i}
Tāpiri 5 ki te 20.
\frac{\left(100+200i\right)\left(25-10i\right)}{\left(25+10i\right)\left(25-10i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 25-10i.
\frac{\left(100+200i\right)\left(25-10i\right)}{25^{2}-10^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(100+200i\right)\left(25-10i\right)}{725}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)i^{2}}{725}
Me whakarea ngā tau matatini 100+200i me 25-10i pēnā i te whakarea huarua.
\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right)}{725}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{2500-1000i+5000i+2000}{725}
Mahia ngā whakarea i roto o 100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right).
\frac{2500+2000+\left(-1000+5000\right)i}{725}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2500-1000i+5000i+2000.
\frac{4500+4000i}{725}
Mahia ngā tāpiri i roto o 2500+2000+\left(-1000+5000\right)i.
\frac{180}{29}+\frac{160}{29}i
Whakawehea te 4500+4000i ki te 725, kia riro ko \frac{180}{29}+\frac{160}{29}i.
Re(\frac{5\times 20+10i\times 20}{5+10i+20})
Whakareatia 5+10i ki te 20.
Re(\frac{100+200i}{5+10i+20})
Mahia ngā whakarea i roto o 5\times 20+10i\times 20.
Re(\frac{100+200i}{5+20+10i})
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o 5+10i me te 20.
Re(\frac{100+200i}{25+10i})
Tāpiri 5 ki te 20.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{\left(25+10i\right)\left(25-10i\right)})
Me whakarea te taurunga me te tauraro o \frac{100+200i}{25+10i} ki te haumi hiato o te tauraro, 25-10i.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{25^{2}-10^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{725})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)i^{2}}{725})
Me whakarea ngā tau matatini 100+200i me 25-10i pēnā i te whakarea huarua.
Re(\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right)}{725})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{2500-1000i+5000i+2000}{725})
Mahia ngā whakarea i roto o 100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right).
Re(\frac{2500+2000+\left(-1000+5000\right)i}{725})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2500-1000i+5000i+2000.
Re(\frac{4500+4000i}{725})
Mahia ngā tāpiri i roto o 2500+2000+\left(-1000+5000\right)i.
Re(\frac{180}{29}+\frac{160}{29}i)
Whakawehea te 4500+4000i ki te 725, kia riro ko \frac{180}{29}+\frac{160}{29}i.
\frac{180}{29}
Ko te wāhi tūturu o \frac{180}{29}+\frac{160}{29}i ko \frac{180}{29}.