Aromātai
\frac{180}{29}+\frac{160}{29}i\approx 6.206896552+5.517241379i
Wāhi Tūturu
\frac{180}{29} = 6\frac{6}{29} = 6.206896551724138
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\times 20+10i\times 20}{5+10i+20}
Whakareatia 5+10i ki te 20.
\frac{100+200i}{5+10i+20}
Mahia ngā whakarea i roto o 5\times 20+10i\times 20.
\frac{100+200i}{5+20+10i}
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o 5+10i me te 20.
\frac{100+200i}{25+10i}
Tāpiri 5 ki te 20.
\frac{\left(100+200i\right)\left(25-10i\right)}{\left(25+10i\right)\left(25-10i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 25-10i.
\frac{\left(100+200i\right)\left(25-10i\right)}{25^{2}-10^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(100+200i\right)\left(25-10i\right)}{725}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)i^{2}}{725}
Me whakarea ngā tau matatini 100+200i me 25-10i pēnā i te whakarea huarua.
\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right)}{725}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{2500-1000i+5000i+2000}{725}
Mahia ngā whakarea i roto o 100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right).
\frac{2500+2000+\left(-1000+5000\right)i}{725}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2500-1000i+5000i+2000.
\frac{4500+4000i}{725}
Mahia ngā tāpiri i roto o 2500+2000+\left(-1000+5000\right)i.
\frac{180}{29}+\frac{160}{29}i
Whakawehea te 4500+4000i ki te 725, kia riro ko \frac{180}{29}+\frac{160}{29}i.
Re(\frac{5\times 20+10i\times 20}{5+10i+20})
Whakareatia 5+10i ki te 20.
Re(\frac{100+200i}{5+10i+20})
Mahia ngā whakarea i roto o 5\times 20+10i\times 20.
Re(\frac{100+200i}{5+20+10i})
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o 5+10i me te 20.
Re(\frac{100+200i}{25+10i})
Tāpiri 5 ki te 20.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{\left(25+10i\right)\left(25-10i\right)})
Me whakarea te taurunga me te tauraro o \frac{100+200i}{25+10i} ki te haumi hiato o te tauraro, 25-10i.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{25^{2}-10^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{725})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)i^{2}}{725})
Me whakarea ngā tau matatini 100+200i me 25-10i pēnā i te whakarea huarua.
Re(\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right)}{725})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{2500-1000i+5000i+2000}{725})
Mahia ngā whakarea i roto o 100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right).
Re(\frac{2500+2000+\left(-1000+5000\right)i}{725})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2500-1000i+5000i+2000.
Re(\frac{4500+4000i}{725})
Mahia ngā tāpiri i roto o 2500+2000+\left(-1000+5000\right)i.
Re(\frac{180}{29}+\frac{160}{29}i)
Whakawehea te 4500+4000i ki te 725, kia riro ko \frac{180}{29}+\frac{160}{29}i.
\frac{180}{29}
Ko te wāhi tūturu o \frac{180}{29}+\frac{160}{29}i ko \frac{180}{29}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}