Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\left(16-2\right)\left(16-3\right)}{\left(25-12\right)\left(25-2\right)\left(25-3\right)}\times 0\times 34
Tangohia te 12 i te 16, ka 4.
\frac{4\times 14\left(16-3\right)}{\left(25-12\right)\left(25-2\right)\left(25-3\right)}\times 0\times 34
Tangohia te 2 i te 16, ka 14.
\frac{56\left(16-3\right)}{\left(25-12\right)\left(25-2\right)\left(25-3\right)}\times 0\times 34
Whakareatia te 4 ki te 14, ka 56.
\frac{56\times 13}{\left(25-12\right)\left(25-2\right)\left(25-3\right)}\times 0\times 34
Tangohia te 3 i te 16, ka 13.
\frac{728}{\left(25-12\right)\left(25-2\right)\left(25-3\right)}\times 0\times 34
Whakareatia te 56 ki te 13, ka 728.
\frac{728}{13\left(25-2\right)\left(25-3\right)}\times 0\times 34
Tangohia te 12 i te 25, ka 13.
\frac{728}{13\times 23\left(25-3\right)}\times 0\times 34
Tangohia te 2 i te 25, ka 23.
\frac{728}{299\left(25-3\right)}\times 0\times 34
Whakareatia te 13 ki te 23, ka 299.
\frac{728}{299\times 22}\times 0\times 34
Tangohia te 3 i te 25, ka 22.
\frac{728}{6578}\times 0\times 34
Whakareatia te 299 ki te 22, ka 6578.
\frac{28}{253}\times 0\times 34
Whakahekea te hautanga \frac{728}{6578} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 26.
0\times 34
Whakareatia te \frac{28}{253} ki te 0, ka 0.
0
Whakareatia te 0 ki te 34, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}