Whakaoti mō x
x=\frac{9}{1250}=0.0072
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 5268, ka 0.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Ko te tau i tāpiria he kore ka hua koia tonu.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 0, ka 0.
-x\left(0-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 268, ka 0.
-x\left(-1\right)x=72\times 10^{-4}x
Ko te tau i tāpiria he kore ka hua koia tonu.
xx=72\times 10^{-4}x
Whakareatia te -1 ki te -1, ka 1.
x^{2}=72\times 10^{-4}x
Whakareatia te x ki te x, ka x^{2}.
x^{2}=72\times \frac{1}{10000}x
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
x^{2}=\frac{9}{1250}x
Whakareatia te 72 ki te \frac{1}{10000}, ka \frac{9}{1250}.
x^{2}-\frac{9}{1250}x=0
Tangohia te \frac{9}{1250}x mai i ngā taha e rua.
x\left(x-\frac{9}{1250}\right)=0
Tauwehea te x.
x=0 x=\frac{9}{1250}
Hei kimi otinga whārite, me whakaoti te x=0 me te x-\frac{9}{1250}=0.
x=\frac{9}{1250}
Tē taea kia ōrite te tāupe x ki 0.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 5268, ka 0.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Ko te tau i tāpiria he kore ka hua koia tonu.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 0, ka 0.
-x\left(0-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 268, ka 0.
-x\left(-1\right)x=72\times 10^{-4}x
Ko te tau i tāpiria he kore ka hua koia tonu.
xx=72\times 10^{-4}x
Whakareatia te -1 ki te -1, ka 1.
x^{2}=72\times 10^{-4}x
Whakareatia te x ki te x, ka x^{2}.
x^{2}=72\times \frac{1}{10000}x
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
x^{2}=\frac{9}{1250}x
Whakareatia te 72 ki te \frac{1}{10000}, ka \frac{9}{1250}.
x^{2}-\frac{9}{1250}x=0
Tangohia te \frac{9}{1250}x mai i ngā taha e rua.
x=\frac{-\left(-\frac{9}{1250}\right)±\sqrt{\left(-\frac{9}{1250}\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -\frac{9}{1250} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{1250}\right)±\frac{9}{1250}}{2}
Tuhia te pūtakerua o te \left(-\frac{9}{1250}\right)^{2}.
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2}
Ko te tauaro o -\frac{9}{1250} ko \frac{9}{1250}.
x=\frac{\frac{9}{625}}{2}
Nā, me whakaoti te whārite x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} ina he tāpiri te ±. Tāpiri \frac{9}{1250} ki te \frac{9}{1250} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{1250}
Whakawehe \frac{9}{625} ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} ina he tango te ±. Tango \frac{9}{1250} mai i \frac{9}{1250} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te 2.
x=\frac{9}{1250} x=0
Kua oti te whārite te whakatau.
x=\frac{9}{1250}
Tē taea kia ōrite te tāupe x ki 0.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 5268, ka 0.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
Ko te tau i tāpiria he kore ka hua koia tonu.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 0, ka 0.
-x\left(0-x\right)=72\times 10^{-4}x
Whakareatia te 0 ki te 268, ka 0.
-x\left(-1\right)x=72\times 10^{-4}x
Ko te tau i tāpiria he kore ka hua koia tonu.
xx=72\times 10^{-4}x
Whakareatia te -1 ki te -1, ka 1.
x^{2}=72\times 10^{-4}x
Whakareatia te x ki te x, ka x^{2}.
x^{2}=72\times \frac{1}{10000}x
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
x^{2}=\frac{9}{1250}x
Whakareatia te 72 ki te \frac{1}{10000}, ka \frac{9}{1250}.
x^{2}-\frac{9}{1250}x=0
Tangohia te \frac{9}{1250}x mai i ngā taha e rua.
x^{2}-\frac{9}{1250}x+\left(-\frac{9}{2500}\right)^{2}=\left(-\frac{9}{2500}\right)^{2}
Whakawehea te -\frac{9}{1250}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2500}. Nā, tāpiria te pūrua o te -\frac{9}{2500} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{1250}x+\frac{81}{6250000}=\frac{81}{6250000}
Pūruatia -\frac{9}{2500} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{9}{2500}\right)^{2}=\frac{81}{6250000}
Tauwehea x^{2}-\frac{9}{1250}x+\frac{81}{6250000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2500}\right)^{2}}=\sqrt{\frac{81}{6250000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2500}=\frac{9}{2500} x-\frac{9}{2500}=-\frac{9}{2500}
Whakarūnātia.
x=\frac{9}{1250} x=0
Me tāpiri \frac{9}{2500} ki ngā taha e rua o te whārite.
x=\frac{9}{1250}
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}