Aromātai
\frac{1250000000000000000000000087}{362500000000000000000}\approx 3448275.862068966
Tauwehe
\frac{7 \cdot 83 \cdot 173 \cdot 12436202282291842846199}{29 \cdot 2 ^ {17} \cdot 5 ^ {20}} = 3448275\frac{3.1249999994788995 \times 10^{20}}{3.625 \times 10^{20}} = 3448275.8620689656
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{6.6\times 10^{-26}\times 3}{6.6\times 10^{-34}\times 3\times 10^{8}}}{290\times 10^{-9}}+1.5\times 1.6\times 10^{-19}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -34 me te 8 kia riro ai te -26.
\frac{\frac{6.6\times 10^{-26}\times 3}{6.6\times 10^{-26}\times 3}}{290\times 10^{-9}}+1.5\times 1.6\times 10^{-19}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -34 me te 8 kia riro ai te -26.
\frac{1}{290\times 10^{-9}}+1.5\times 1.6\times 10^{-19}
Whakawehea te 6.6\times 10^{-26}\times 3 ki te 6.6\times 10^{-26}\times 3, kia riro ko 1.
\frac{1}{290\times \frac{1}{1000000000}}+1.5\times 1.6\times 10^{-19}
Tātaihia te 10 mā te pū o -9, kia riro ko \frac{1}{1000000000}.
\frac{1}{\frac{29}{100000000}}+1.5\times 1.6\times 10^{-19}
Whakareatia te 290 ki te \frac{1}{1000000000}, ka \frac{29}{100000000}.
1\times \frac{100000000}{29}+1.5\times 1.6\times 10^{-19}
Whakawehe 1 ki te \frac{29}{100000000} mā te whakarea 1 ki te tau huripoki o \frac{29}{100000000}.
\frac{100000000}{29}+1.5\times 1.6\times 10^{-19}
Whakareatia te 1 ki te \frac{100000000}{29}, ka \frac{100000000}{29}.
\frac{100000000}{29}+2.4\times 10^{-19}
Whakareatia te 1.5 ki te 1.6, ka 2.4.
\frac{100000000}{29}+2.4\times \frac{1}{10000000000000000000}
Tātaihia te 10 mā te pū o -19, kia riro ko \frac{1}{10000000000000000000}.
\frac{100000000}{29}+\frac{3}{12500000000000000000}
Whakareatia te 2.4 ki te \frac{1}{10000000000000000000}, ka \frac{3}{12500000000000000000}.
\frac{1250000000000000000000000087}{362500000000000000000}
Tāpirihia te \frac{100000000}{29} ki te \frac{3}{12500000000000000000}, ka \frac{1250000000000000000000000087}{362500000000000000000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}