Aromātai
-\frac{11}{180}\approx -0.061111111
Tauwehe
-\frac{11}{180} = -0.06111111111111111
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4}{10}+\frac{15}{10}}{\frac{9}{2}\times 4}-\frac{5}{8}\times \frac{4}{15}
Ko te maha noa iti rawa atu o 5 me 2 ko 10. Me tahuri \frac{2}{5} me \frac{3}{2} ki te hautau me te tautūnga 10.
\frac{\frac{4+15}{10}}{\frac{9}{2}\times 4}-\frac{5}{8}\times \frac{4}{15}
Tā te mea he rite te tauraro o \frac{4}{10} me \frac{15}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{19}{10}}{\frac{9}{2}\times 4}-\frac{5}{8}\times \frac{4}{15}
Tāpirihia te 4 ki te 15, ka 19.
\frac{\frac{19}{10}}{\frac{9\times 4}{2}}-\frac{5}{8}\times \frac{4}{15}
Tuhia te \frac{9}{2}\times 4 hei hautanga kotahi.
\frac{\frac{19}{10}}{\frac{36}{2}}-\frac{5}{8}\times \frac{4}{15}
Whakareatia te 9 ki te 4, ka 36.
\frac{\frac{19}{10}}{18}-\frac{5}{8}\times \frac{4}{15}
Whakawehea te 36 ki te 2, kia riro ko 18.
\frac{19}{10\times 18}-\frac{5}{8}\times \frac{4}{15}
Tuhia te \frac{\frac{19}{10}}{18} hei hautanga kotahi.
\frac{19}{180}-\frac{5}{8}\times \frac{4}{15}
Whakareatia te 10 ki te 18, ka 180.
\frac{19}{180}-\frac{5\times 4}{8\times 15}
Me whakarea te \frac{5}{8} ki te \frac{4}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{19}{180}-\frac{20}{120}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 4}{8\times 15}.
\frac{19}{180}-\frac{1}{6}
Whakahekea te hautanga \frac{20}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{19}{180}-\frac{30}{180}
Ko te maha noa iti rawa atu o 180 me 6 ko 180. Me tahuri \frac{19}{180} me \frac{1}{6} ki te hautau me te tautūnga 180.
\frac{19-30}{180}
Tā te mea he rite te tauraro o \frac{19}{180} me \frac{30}{180}, me tango rāua mā te tango i ō raua taurunga.
-\frac{11}{180}
Tangohia te 30 i te 19, ka -11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}