Aromātai
\frac{9}{2}=4.5
Tauwehe
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
Pātaitai
Arithmetic
\frac{ \frac{ 105 }{ 90 } -1+ \frac{ 12 }{ 90 } }{ \frac{ 3 }{ 9 } - \frac{ 24 }{ 90 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{7}{6}-1+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Whakahekea te hautanga \frac{105}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{\frac{7}{6}-\frac{6}{6}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{\frac{7-6}{6}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Tā te mea he rite te tauraro o \frac{7}{6} me \frac{6}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{6}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Tangohia te 6 i te 7, ka 1.
\frac{\frac{1}{6}+\frac{2}{15}}{\frac{3}{9}-\frac{24}{90}}
Whakahekea te hautanga \frac{12}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\frac{5}{30}+\frac{4}{30}}{\frac{3}{9}-\frac{24}{90}}
Ko te maha noa iti rawa atu o 6 me 15 ko 30. Me tahuri \frac{1}{6} me \frac{2}{15} ki te hautau me te tautūnga 30.
\frac{\frac{5+4}{30}}{\frac{3}{9}-\frac{24}{90}}
Tā te mea he rite te tauraro o \frac{5}{30} me \frac{4}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{9}{30}}{\frac{3}{9}-\frac{24}{90}}
Tāpirihia te 5 ki te 4, ka 9.
\frac{\frac{3}{10}}{\frac{3}{9}-\frac{24}{90}}
Whakahekea te hautanga \frac{9}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{3}{10}}{\frac{1}{3}-\frac{24}{90}}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{3}{10}}{\frac{1}{3}-\frac{4}{15}}
Whakahekea te hautanga \frac{24}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\frac{3}{10}}{\frac{5}{15}-\frac{4}{15}}
Ko te maha noa iti rawa atu o 3 me 15 ko 15. Me tahuri \frac{1}{3} me \frac{4}{15} ki te hautau me te tautūnga 15.
\frac{\frac{3}{10}}{\frac{5-4}{15}}
Tā te mea he rite te tauraro o \frac{5}{15} me \frac{4}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3}{10}}{\frac{1}{15}}
Tangohia te 4 i te 5, ka 1.
\frac{3}{10}\times 15
Whakawehe \frac{3}{10} ki te \frac{1}{15} mā te whakarea \frac{3}{10} ki te tau huripoki o \frac{1}{15}.
\frac{3\times 15}{10}
Tuhia te \frac{3}{10}\times 15 hei hautanga kotahi.
\frac{45}{10}
Whakareatia te 3 ki te 15, ka 45.
\frac{9}{2}
Whakahekea te hautanga \frac{45}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}