Aromātai
\frac{c-d^{2}}{d\left(6c+1\right)}
Whakaroha
\frac{c-d^{2}}{d\left(6c+1\right)}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac{ \frac{ 1 }{ d } - \frac{ d }{ c } }{ \frac{ 1 }{ c } +6 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{c}{cd}-\frac{dd}{cd}}{\frac{1}{c}+6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o d me c ko cd. Whakareatia \frac{1}{d} ki te \frac{c}{c}. Whakareatia \frac{d}{c} ki te \frac{d}{d}.
\frac{\frac{c-dd}{cd}}{\frac{1}{c}+6}
Tā te mea he rite te tauraro o \frac{c}{cd} me \frac{dd}{cd}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+6}
Mahia ngā whakarea i roto o c-dd.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+\frac{6c}{c}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6 ki te \frac{c}{c}.
\frac{\frac{c-d^{2}}{cd}}{\frac{1+6c}{c}}
Tā te mea he rite te tauraro o \frac{1}{c} me \frac{6c}{c}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(c-d^{2}\right)c}{cd\left(1+6c\right)}
Whakawehe \frac{c-d^{2}}{cd} ki te \frac{1+6c}{c} mā te whakarea \frac{c-d^{2}}{cd} ki te tau huripoki o \frac{1+6c}{c}.
\frac{c-d^{2}}{d\left(6c+1\right)}
Me whakakore tahi te c i te taurunga me te tauraro.
\frac{c-d^{2}}{6dc+d}
Whakamahia te āhuatanga tohatoha hei whakarea te d ki te 6c+1.
\frac{\frac{c}{cd}-\frac{dd}{cd}}{\frac{1}{c}+6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o d me c ko cd. Whakareatia \frac{1}{d} ki te \frac{c}{c}. Whakareatia \frac{d}{c} ki te \frac{d}{d}.
\frac{\frac{c-dd}{cd}}{\frac{1}{c}+6}
Tā te mea he rite te tauraro o \frac{c}{cd} me \frac{dd}{cd}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+6}
Mahia ngā whakarea i roto o c-dd.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+\frac{6c}{c}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6 ki te \frac{c}{c}.
\frac{\frac{c-d^{2}}{cd}}{\frac{1+6c}{c}}
Tā te mea he rite te tauraro o \frac{1}{c} me \frac{6c}{c}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(c-d^{2}\right)c}{cd\left(1+6c\right)}
Whakawehe \frac{c-d^{2}}{cd} ki te \frac{1+6c}{c} mā te whakarea \frac{c-d^{2}}{cd} ki te tau huripoki o \frac{1+6c}{c}.
\frac{c-d^{2}}{d\left(6c+1\right)}
Me whakakore tahi te c i te taurunga me te tauraro.
\frac{c-d^{2}}{6dc+d}
Whakamahia te āhuatanga tohatoha hei whakarea te d ki te 6c+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}