Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{c}{cd}-\frac{dd}{cd}}{\frac{1}{c}+6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o d me c ko cd. Whakareatia \frac{1}{d} ki te \frac{c}{c}. Whakareatia \frac{d}{c} ki te \frac{d}{d}.
\frac{\frac{c-dd}{cd}}{\frac{1}{c}+6}
Tā te mea he rite te tauraro o \frac{c}{cd} me \frac{dd}{cd}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+6}
Mahia ngā whakarea i roto o c-dd.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+\frac{6c}{c}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6 ki te \frac{c}{c}.
\frac{\frac{c-d^{2}}{cd}}{\frac{1+6c}{c}}
Tā te mea he rite te tauraro o \frac{1}{c} me \frac{6c}{c}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(c-d^{2}\right)c}{cd\left(1+6c\right)}
Whakawehe \frac{c-d^{2}}{cd} ki te \frac{1+6c}{c} mā te whakarea \frac{c-d^{2}}{cd} ki te tau huripoki o \frac{1+6c}{c}.
\frac{c-d^{2}}{d\left(6c+1\right)}
Me whakakore tahi te c i te taurunga me te tauraro.
\frac{c-d^{2}}{6dc+d}
Whakamahia te āhuatanga tohatoha hei whakarea te d ki te 6c+1.
\frac{\frac{c}{cd}-\frac{dd}{cd}}{\frac{1}{c}+6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o d me c ko cd. Whakareatia \frac{1}{d} ki te \frac{c}{c}. Whakareatia \frac{d}{c} ki te \frac{d}{d}.
\frac{\frac{c-dd}{cd}}{\frac{1}{c}+6}
Tā te mea he rite te tauraro o \frac{c}{cd} me \frac{dd}{cd}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+6}
Mahia ngā whakarea i roto o c-dd.
\frac{\frac{c-d^{2}}{cd}}{\frac{1}{c}+\frac{6c}{c}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6 ki te \frac{c}{c}.
\frac{\frac{c-d^{2}}{cd}}{\frac{1+6c}{c}}
Tā te mea he rite te tauraro o \frac{1}{c} me \frac{6c}{c}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(c-d^{2}\right)c}{cd\left(1+6c\right)}
Whakawehe \frac{c-d^{2}}{cd} ki te \frac{1+6c}{c} mā te whakarea \frac{c-d^{2}}{cd} ki te tau huripoki o \frac{1+6c}{c}.
\frac{c-d^{2}}{d\left(6c+1\right)}
Me whakakore tahi te c i te taurunga me te tauraro.
\frac{c-d^{2}}{6dc+d}
Whakamahia te āhuatanga tohatoha hei whakarea te d ki te 6c+1.