Aromātai
\frac{\sqrt{2}+\sqrt{6}-2\sqrt{3}-1}{5}\approx -0.120079662
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\frac{\sqrt{2}}{2}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\frac{\sqrt{2}}{2}-\frac{2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2}{2}.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\sqrt{3}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{3} ki te \frac{2}{2}.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}+2\sqrt{3}}{2}}
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{2\sqrt{3}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(\sqrt{2}-2\right)\times 2}{2\left(\sqrt{2}+2\sqrt{3}\right)}
Whakawehe \frac{\sqrt{2}-2}{2} ki te \frac{\sqrt{2}+2\sqrt{3}}{2} mā te whakarea \frac{\sqrt{2}-2}{2} ki te tau huripoki o \frac{\sqrt{2}+2\sqrt{3}}{2}.
\frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-2\sqrt{3}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-\left(2\sqrt{3}\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-2^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\left(\sqrt{3}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-12}
Whakareatia te 4 ki te 3, ka 12.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{-10}
Tangohia te 12 i te 2, ka -10.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{2}-2 ki ia tau o \sqrt{2}-2\sqrt{3}.
\frac{2-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2-2\sqrt{6}-2\sqrt{2}+4\sqrt{3}}{-10}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}