Aromātai
\frac{6}{7}\approx 0.857142857
Tauwehe
\frac{2 \cdot 3}{7} = 0.8571428571428571
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{47}{14}+\frac{7}{4}+\frac{11}{4}}{\frac{4}{3}}
Ka taea te hautanga \frac{-47}{14} te tuhi anō ko -\frac{47}{14} mā te tango i te tohu tōraro.
\frac{-\frac{94}{28}+\frac{49}{28}+\frac{11}{4}}{\frac{4}{3}}
Ko te maha noa iti rawa atu o 14 me 4 ko 28. Me tahuri -\frac{47}{14} me \frac{7}{4} ki te hautau me te tautūnga 28.
\frac{\frac{-94+49}{28}+\frac{11}{4}}{\frac{4}{3}}
Tā te mea he rite te tauraro o -\frac{94}{28} me \frac{49}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{45}{28}+\frac{11}{4}}{\frac{4}{3}}
Tāpirihia te -94 ki te 49, ka -45.
\frac{-\frac{45}{28}+\frac{77}{28}}{\frac{4}{3}}
Ko te maha noa iti rawa atu o 28 me 4 ko 28. Me tahuri -\frac{45}{28} me \frac{11}{4} ki te hautau me te tautūnga 28.
\frac{\frac{-45+77}{28}}{\frac{4}{3}}
Tā te mea he rite te tauraro o -\frac{45}{28} me \frac{77}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{32}{28}}{\frac{4}{3}}
Tāpirihia te -45 ki te 77, ka 32.
\frac{\frac{8}{7}}{\frac{4}{3}}
Whakahekea te hautanga \frac{32}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{8}{7}\times \frac{3}{4}
Whakawehe \frac{8}{7} ki te \frac{4}{3} mā te whakarea \frac{8}{7} ki te tau huripoki o \frac{4}{3}.
\frac{8\times 3}{7\times 4}
Me whakarea te \frac{8}{7} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{24}{28}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 3}{7\times 4}.
\frac{6}{7}
Whakahekea te hautanga \frac{24}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}