Aromātai
x^{3}
Whakaroha
x^{3}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(x^{-2}+y^{-2}\right)x^{-1}}{x^{-2}\left(x^{-2}y^{-2}+x^{-4}\right)}
Whakawehe \frac{x^{-2}+y^{-2}}{x^{-2}} ki te \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} mā te whakarea \frac{x^{-2}+y^{-2}}{x^{-2}} ki te tau huripoki o \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}}.
\frac{\left(x^{-2}+y^{-2}\right)x^{1}}{x^{-2}y^{-2}+x^{-4}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(x^{-2}+y^{-2}\right)x}{x^{-2}y^{-2}+x^{-4}}
Tātaihia te x mā te pū o 1, kia riro ko x.
\frac{\left(y^{-2}x^{2}+1\right)x^{-2}x}{\left(x^{-2}y^{2}+1\right)x^{-2}y^{-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(y^{-2}x^{2}+1\right)x}{\left(x^{-2}y^{2}+1\right)y^{-2}}
Me whakakore tahi te x^{-2} i te taurunga me te tauraro.
\frac{x+y^{-2}x^{3}}{x^{-2}+y^{-2}}
Me whakaroha te kīanga.
\frac{y^{-2}x\left(x^{2}+y^{2}\right)}{\left(y^{-2}x^{2}+1\right)x^{-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{y^{-2}\left(x^{2}+y^{2}\right)x^{3}}{y^{-2}x^{2}+1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{1}{y}x\right)^{2}}
Me whakaroha te kīanga.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{x}{y}\right)^{2}}
Tuhia te \frac{1}{y}x hei hautanga kotahi.
\frac{x^{3}+y^{-2}x^{5}}{1+\frac{x^{2}}{y^{2}}}
Kia whakarewa i te \frac{x}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}}{y^{2}}+\frac{x^{2}}{y^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{y^{2}}{y^{2}}.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}+x^{2}}{y^{2}}}
Tā te mea he rite te tauraro o \frac{y^{2}}{y^{2}} me \frac{x^{2}}{y^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(x^{3}+y^{-2}x^{5}\right)y^{2}}{y^{2}+x^{2}}
Whakawehe x^{3}+y^{-2}x^{5} ki te \frac{y^{2}+x^{2}}{y^{2}} mā te whakarea x^{3}+y^{-2}x^{5} ki te tau huripoki o \frac{y^{2}+x^{2}}{y^{2}}.
\frac{y^{-2}y^{2}\left(x^{2}+y^{2}\right)x^{3}}{x^{2}+y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
y^{-2}y^{2}x^{3}
Me whakakore tahi te x^{2}+y^{2} i te taurunga me te tauraro.
x^{3}
Me whakaroha te kīanga.
\frac{\left(x^{-2}+y^{-2}\right)x^{-1}}{x^{-2}\left(x^{-2}y^{-2}+x^{-4}\right)}
Whakawehe \frac{x^{-2}+y^{-2}}{x^{-2}} ki te \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} mā te whakarea \frac{x^{-2}+y^{-2}}{x^{-2}} ki te tau huripoki o \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}}.
\frac{\left(x^{-2}+y^{-2}\right)x^{1}}{x^{-2}y^{-2}+x^{-4}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(x^{-2}+y^{-2}\right)x}{x^{-2}y^{-2}+x^{-4}}
Tātaihia te x mā te pū o 1, kia riro ko x.
\frac{\left(y^{-2}x^{2}+1\right)x^{-2}x}{\left(x^{-2}y^{2}+1\right)x^{-2}y^{-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(y^{-2}x^{2}+1\right)x}{\left(x^{-2}y^{2}+1\right)y^{-2}}
Me whakakore tahi te x^{-2} i te taurunga me te tauraro.
\frac{x+y^{-2}x^{3}}{x^{-2}+y^{-2}}
Me whakaroha te kīanga.
\frac{y^{-2}x\left(x^{2}+y^{2}\right)}{\left(y^{-2}x^{2}+1\right)x^{-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{y^{-2}\left(x^{2}+y^{2}\right)x^{3}}{y^{-2}x^{2}+1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{1}{y}x\right)^{2}}
Me whakaroha te kīanga.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{x}{y}\right)^{2}}
Tuhia te \frac{1}{y}x hei hautanga kotahi.
\frac{x^{3}+y^{-2}x^{5}}{1+\frac{x^{2}}{y^{2}}}
Kia whakarewa i te \frac{x}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}}{y^{2}}+\frac{x^{2}}{y^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{y^{2}}{y^{2}}.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}+x^{2}}{y^{2}}}
Tā te mea he rite te tauraro o \frac{y^{2}}{y^{2}} me \frac{x^{2}}{y^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(x^{3}+y^{-2}x^{5}\right)y^{2}}{y^{2}+x^{2}}
Whakawehe x^{3}+y^{-2}x^{5} ki te \frac{y^{2}+x^{2}}{y^{2}} mā te whakarea x^{3}+y^{-2}x^{5} ki te tau huripoki o \frac{y^{2}+x^{2}}{y^{2}}.
\frac{y^{-2}y^{2}\left(x^{2}+y^{2}\right)x^{3}}{x^{2}+y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
y^{-2}y^{2}x^{3}
Me whakakore tahi te x^{2}+y^{2} i te taurunga me te tauraro.
x^{3}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}