Aromātai
\frac{284593-616\sqrt{3}}{284591}\approx 0.996257987
Tauwehe
\frac{284593 - 616 \sqrt{3}}{284591} = 0.9962579867337251
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\sqrt{3}}{2}-\frac{154}{94864}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
Tātaihia te 308 mā te pū o 2, kia riro ko 94864.
\frac{\frac{\sqrt{3}}{2}-\frac{1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
Whakahekea te hautanga \frac{154}{94864} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 154.
\frac{\frac{308\sqrt{3}}{616}-\frac{1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 616 ko 616. Whakareatia \frac{\sqrt{3}}{2} ki te \frac{308}{308}.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
Tā te mea he rite te tauraro o \frac{308\sqrt{3}}{616} me \frac{1}{616}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{94864}}
Tātaihia te 308 mā te pū o 2, kia riro ko 94864.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{\sqrt{3}}{2}+\frac{1}{616}}
Whakahekea te hautanga \frac{154}{94864} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 154.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{308\sqrt{3}}{616}+\frac{1}{616}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 616 ko 616. Whakareatia \frac{\sqrt{3}}{2} ki te \frac{308}{308}.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{308\sqrt{3}+1}{616}}
Tā te mea he rite te tauraro o \frac{308\sqrt{3}}{616} me \frac{1}{616}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(308\sqrt{3}-1\right)\times 616}{616\left(308\sqrt{3}+1\right)}
Whakawehe \frac{308\sqrt{3}-1}{616} ki te \frac{308\sqrt{3}+1}{616} mā te whakarea \frac{308\sqrt{3}-1}{616} ki te tau huripoki o \frac{308\sqrt{3}+1}{616}.
\frac{308\sqrt{3}-1}{308\sqrt{3}+1}
Me whakakore tahi te 616 i te taurunga me te tauraro.
\frac{\left(308\sqrt{3}-1\right)\left(308\sqrt{3}-1\right)}{\left(308\sqrt{3}+1\right)\left(308\sqrt{3}-1\right)}
Whakangāwaritia te tauraro o \frac{308\sqrt{3}-1}{308\sqrt{3}+1} mā te whakarea i te taurunga me te tauraro ki te 308\sqrt{3}-1.
\frac{\left(308\sqrt{3}-1\right)\left(308\sqrt{3}-1\right)}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Whakaarohia te \left(308\sqrt{3}+1\right)\left(308\sqrt{3}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(308\sqrt{3}-1\right)^{2}}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Whakareatia te 308\sqrt{3}-1 ki te 308\sqrt{3}-1, ka \left(308\sqrt{3}-1\right)^{2}.
\frac{94864\left(\sqrt{3}\right)^{2}-616\sqrt{3}+1}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(308\sqrt{3}-1\right)^{2}.
\frac{94864\times 3-616\sqrt{3}+1}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{284592-616\sqrt{3}+1}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Whakareatia te 94864 ki te 3, ka 284592.
\frac{284593-616\sqrt{3}}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Tāpirihia te 284592 ki te 1, ka 284593.
\frac{284593-616\sqrt{3}}{308^{2}\left(\sqrt{3}\right)^{2}-1^{2}}
Whakarohaina te \left(308\sqrt{3}\right)^{2}.
\frac{284593-616\sqrt{3}}{94864\left(\sqrt{3}\right)^{2}-1^{2}}
Tātaihia te 308 mā te pū o 2, kia riro ko 94864.
\frac{284593-616\sqrt{3}}{94864\times 3-1^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{284593-616\sqrt{3}}{284592-1^{2}}
Whakareatia te 94864 ki te 3, ka 284592.
\frac{284593-616\sqrt{3}}{284592-1}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{284593-616\sqrt{3}}{284591}
Tangohia te 1 i te 284592, ka 284591.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}