Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Tātaitia te \sqrt[5]{\frac{1}{32}} kia tae ki \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Tātaihia te \frac{2}{3} mā te pū o -1, kia riro ko \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Whakawehe \frac{1}{2} ki te \frac{3}{2} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Whakareatia te \frac{1}{2} ki te \frac{2}{3}, ka \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Tangohia te \frac{1}{3} i te 1, ka \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{3}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Whakareatia te \frac{2}{3} ki te \frac{9}{4}, ka \frac{3}{2}.
\frac{\frac{1}{3}}{2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Tāpirihia te \frac{3}{2} ki te \frac{1}{2}, ka 2.
\frac{1}{3\times 2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Tuhia te \frac{\frac{1}{3}}{2} hei hautanga kotahi.
\frac{1}{6}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Whakareatia te 3 ki te 2, ka 6.
\frac{1}{6}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Tangohia te \frac{16}{25} i te 1, ka \frac{9}{25}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{2}{15}}}
Tātaihia te \frac{15}{2} mā te pū o -1, kia riro ko \frac{2}{15}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{15}{2}}
Whakawehe \frac{4}{5} ki te \frac{2}{15} mā te whakarea \frac{4}{5} ki te tau huripoki o \frac{2}{15}.
\frac{1}{6}+\frac{\frac{3}{5}}{6}
Whakareatia te \frac{4}{5} ki te \frac{15}{2}, ka 6.
\frac{1}{6}+\frac{3}{5\times 6}
Tuhia te \frac{\frac{3}{5}}{6} hei hautanga kotahi.
\frac{1}{6}+\frac{3}{30}
Whakareatia te 5 ki te 6, ka 30.
\frac{1}{6}+\frac{1}{10}
Whakahekea te hautanga \frac{3}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{4}{15}
Tāpirihia te \frac{1}{6} ki te \frac{1}{10}, ka \frac{4}{15}.