Aromātai
\frac{13}{5890473600}\approx 2.206953275 \cdot 10^{-9}
Tauwehe
\frac{13}{2 ^ {7} \cdot 3 \cdot 5 ^ {2} \cdot 11 ^ {3} \cdot 461} = 2.206953274521084 \times 10^{-9}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{\frac{\frac{\frac{78}{12}}{55}}{88}}{5}}{6}}{922\times 22}
Tuhia te \frac{\frac{\frac{\frac{\frac{\frac{\frac{78}{12}}{55}}{88}}{5}}{6}}{922}}{22} hei hautanga kotahi.
\frac{\frac{\frac{\frac{\frac{78}{12}}{55}}{88}}{5\times 6}}{922\times 22}
Tuhia te \frac{\frac{\frac{\frac{\frac{78}{12}}{55}}{88}}{5}}{6} hei hautanga kotahi.
\frac{\frac{\frac{\frac{78}{12}}{55\times 88}}{5\times 6}}{922\times 22}
Tuhia te \frac{\frac{\frac{78}{12}}{55}}{88} hei hautanga kotahi.
\frac{\frac{\frac{\frac{13}{2}}{55\times 88}}{5\times 6}}{922\times 22}
Whakahekea te hautanga \frac{78}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\frac{\frac{\frac{13}{2}}{4840}}{5\times 6}}{922\times 22}
Whakareatia te 55 ki te 88, ka 4840.
\frac{\frac{\frac{13}{2\times 4840}}{5\times 6}}{922\times 22}
Tuhia te \frac{\frac{13}{2}}{4840} hei hautanga kotahi.
\frac{\frac{\frac{13}{9680}}{5\times 6}}{922\times 22}
Whakareatia te 2 ki te 4840, ka 9680.
\frac{\frac{\frac{13}{9680}}{30}}{922\times 22}
Whakareatia te 5 ki te 6, ka 30.
\frac{\frac{13}{9680\times 30}}{922\times 22}
Tuhia te \frac{\frac{13}{9680}}{30} hei hautanga kotahi.
\frac{\frac{13}{290400}}{922\times 22}
Whakareatia te 9680 ki te 30, ka 290400.
\frac{\frac{13}{290400}}{20284}
Whakareatia te 922 ki te 22, ka 20284.
\frac{13}{290400\times 20284}
Tuhia te \frac{\frac{13}{290400}}{20284} hei hautanga kotahi.
\frac{13}{5890473600}
Whakareatia te 290400 ki te 20284, ka 5890473600.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}