\frac{ }{ } { n }^{ 2 } = { 11 }^{ 2 } - { 107 }^{ 2 } + { 96 }^{ 2 } + { 59 }^{ 2 }
Whakaoti mō n
n=-37
n=37
Tohaina
Kua tāruatia ki te papatopenga
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
1n^{2}=121-107^{2}+96^{2}+59^{2}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
1n^{2}=121-11449+96^{2}+59^{2}
Tātaihia te 107 mā te pū o 2, kia riro ko 11449.
1n^{2}=-11328+96^{2}+59^{2}
Tangohia te 11449 i te 121, ka -11328.
1n^{2}=-11328+9216+59^{2}
Tātaihia te 96 mā te pū o 2, kia riro ko 9216.
1n^{2}=-2112+59^{2}
Tāpirihia te -11328 ki te 9216, ka -2112.
1n^{2}=-2112+3481
Tātaihia te 59 mā te pū o 2, kia riro ko 3481.
1n^{2}=1369
Tāpirihia te -2112 ki te 3481, ka 1369.
1n^{2}-1369=0
Tangohia te 1369 mai i ngā taha e rua.
n^{2}-1369=0
Whakaraupapatia anō ngā kīanga tau.
\left(n-37\right)\left(n+37\right)=0
Whakaarohia te n^{2}-1369. Tuhia anō te n^{2}-1369 hei n^{2}-37^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=37 n=-37
Hei kimi otinga whārite, me whakaoti te n-37=0 me te n+37=0.
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
1n^{2}=121-107^{2}+96^{2}+59^{2}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
1n^{2}=121-11449+96^{2}+59^{2}
Tātaihia te 107 mā te pū o 2, kia riro ko 11449.
1n^{2}=-11328+96^{2}+59^{2}
Tangohia te 11449 i te 121, ka -11328.
1n^{2}=-11328+9216+59^{2}
Tātaihia te 96 mā te pū o 2, kia riro ko 9216.
1n^{2}=-2112+59^{2}
Tāpirihia te -11328 ki te 9216, ka -2112.
1n^{2}=-2112+3481
Tātaihia te 59 mā te pū o 2, kia riro ko 3481.
1n^{2}=1369
Tāpirihia te -2112 ki te 3481, ka 1369.
n^{2}=1369
Whakawehea ngā taha e rua ki te 1.
n=37 n=-37
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
1n^{2}=121-107^{2}+96^{2}+59^{2}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
1n^{2}=121-11449+96^{2}+59^{2}
Tātaihia te 107 mā te pū o 2, kia riro ko 11449.
1n^{2}=-11328+96^{2}+59^{2}
Tangohia te 11449 i te 121, ka -11328.
1n^{2}=-11328+9216+59^{2}
Tātaihia te 96 mā te pū o 2, kia riro ko 9216.
1n^{2}=-2112+59^{2}
Tāpirihia te -11328 ki te 9216, ka -2112.
1n^{2}=-2112+3481
Tātaihia te 59 mā te pū o 2, kia riro ko 3481.
1n^{2}=1369
Tāpirihia te -2112 ki te 3481, ka 1369.
1n^{2}-1369=0
Tangohia te 1369 mai i ngā taha e rua.
n^{2}-1369=0
Whakaraupapatia anō ngā kīanga tau.
n=\frac{0±\sqrt{0^{2}-4\left(-1369\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -1369 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-1369\right)}}{2}
Pūrua 0.
n=\frac{0±\sqrt{5476}}{2}
Whakareatia -4 ki te -1369.
n=\frac{0±74}{2}
Tuhia te pūtakerua o te 5476.
n=37
Nā, me whakaoti te whārite n=\frac{0±74}{2} ina he tāpiri te ±. Whakawehe 74 ki te 2.
n=-37
Nā, me whakaoti te whārite n=\frac{0±74}{2} ina he tango te ±. Whakawehe -74 ki te 2.
n=37 n=-37
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}