Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(z^{2}-4\right)\left(z^{2}+z-12\right)}{\left(z-3\right)\left(z+2\right)}
Whakawehe \frac{z^{2}-4}{z-3} ki te \frac{z+2}{z^{2}+z-12} mā te whakarea \frac{z^{2}-4}{z-3} ki te tau huripoki o \frac{z+2}{z^{2}+z-12}.
\frac{\left(z-3\right)\left(z-2\right)\left(z+2\right)\left(z+4\right)}{\left(z-3\right)\left(z+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\left(z-2\right)\left(z+4\right)
Me whakakore tahi te \left(z-3\right)\left(z+2\right) i te taurunga me te tauraro.
z^{2}+2z-8
Me whakaroha te kīanga.
\frac{\left(z^{2}-4\right)\left(z^{2}+z-12\right)}{\left(z-3\right)\left(z+2\right)}
Whakawehe \frac{z^{2}-4}{z-3} ki te \frac{z+2}{z^{2}+z-12} mā te whakarea \frac{z^{2}-4}{z-3} ki te tau huripoki o \frac{z+2}{z^{2}+z-12}.
\frac{\left(z-3\right)\left(z-2\right)\left(z+2\right)\left(z+4\right)}{\left(z-3\right)\left(z+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\left(z-2\right)\left(z+4\right)
Me whakakore tahi te \left(z-3\right)\left(z+2\right) i te taurunga me te tauraro.
z^{2}+2z-8
Me whakaroha te kīanga.