Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(z^{2}-4\right)\left(z+3\right)}{z\left(z+2\right)}
Whakawehe \frac{z^{2}-4}{z} ki te \frac{z+2}{z+3} mā te whakarea \frac{z^{2}-4}{z} ki te tau huripoki o \frac{z+2}{z+3}.
\frac{\left(z-2\right)\left(z+2\right)\left(z+3\right)}{z\left(z+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(z-2\right)\left(z+3\right)}{z}
Me whakakore tahi te z+2 i te taurunga me te tauraro.
\frac{z^{2}+z-6}{z}
Me whakaroha te kīanga.
\frac{\left(z^{2}-4\right)\left(z+3\right)}{z\left(z+2\right)}
Whakawehe \frac{z^{2}-4}{z} ki te \frac{z+2}{z+3} mā te whakarea \frac{z^{2}-4}{z} ki te tau huripoki o \frac{z+2}{z+3}.
\frac{\left(z-2\right)\left(z+2\right)\left(z+3\right)}{z\left(z+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(z-2\right)\left(z+3\right)}{z}
Me whakakore tahi te z+2 i te taurunga me te tauraro.
\frac{z^{2}+z-6}{z}
Me whakaroha te kīanga.