Whakaoti mō x
x=-2-\frac{6}{y}
y\neq 0
Whakaoti mō y
y=-\frac{6}{x+2}
x\neq -2
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { y - x y } { 3 } = - \frac { 4 + 2 y } { - 2 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(y-xy\right)=3\left(4+2y\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,-2.
2y-2yx=3\left(4+2y\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-xy.
2y-2yx=12+6y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4+2y.
-2yx=12+6y-2y
Tangohia te 2y mai i ngā taha e rua.
-2yx=12+4y
Pahekotia te 6y me -2y, ka 4y.
\left(-2y\right)x=4y+12
He hanga arowhānui tō te whārite.
\frac{\left(-2y\right)x}{-2y}=\frac{4y+12}{-2y}
Whakawehea ngā taha e rua ki te -2y.
x=\frac{4y+12}{-2y}
Mā te whakawehe ki te -2y ka wetekia te whakareanga ki te -2y.
x=-2-\frac{6}{y}
Whakawehe 12+4y ki te -2y.
2\left(y-xy\right)=3\left(4+2y\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,-2.
2y-2yx=3\left(4+2y\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-xy.
2y-2yx=12+6y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4+2y.
2y-2yx-6y=12
Tangohia te 6y mai i ngā taha e rua.
-4y-2yx=12
Pahekotia te 2y me -6y, ka -4y.
\left(-4-2x\right)y=12
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(-2x-4\right)y=12
He hanga arowhānui tō te whārite.
\frac{\left(-2x-4\right)y}{-2x-4}=\frac{12}{-2x-4}
Whakawehea ngā taha e rua ki te -4-2x.
y=\frac{12}{-2x-4}
Mā te whakawehe ki te -4-2x ka wetekia te whakareanga ki te -4-2x.
y=-\frac{6}{x+2}
Whakawehe 12 ki te -4-2x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}