Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(y-7\right)\left(y-3\right)=\left(y-5\right)\left(y-1\right)
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara 5,7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(y-7\right)\left(y-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-5,y-7.
y^{2}-10y+21=\left(y-5\right)\left(y-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te y-7 ki te y-3 ka whakakotahi i ngā kupu rite.
y^{2}-10y+21=y^{2}-6y+5
Whakamahia te āhuatanga tuaritanga hei whakarea te y-5 ki te y-1 ka whakakotahi i ngā kupu rite.
y^{2}-10y+21-y^{2}=-6y+5
Tangohia te y^{2} mai i ngā taha e rua.
-10y+21=-6y+5
Pahekotia te y^{2} me -y^{2}, ka 0.
-10y+21+6y=5
Me tāpiri te 6y ki ngā taha e rua.
-4y+21=5
Pahekotia te -10y me 6y, ka -4y.
-4y=5-21
Tangohia te 21 mai i ngā taha e rua.
-4y=-16
Tangohia te 21 i te 5, ka -16.
y=\frac{-16}{-4}
Whakawehea ngā taha e rua ki te -4.
y=4
Whakawehea te -16 ki te -4, kia riro ko 4.