Whakaoti mō y
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(y-7\right)\left(y-3\right)=\left(y-5\right)\left(y-1\right)
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara 5,7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(y-7\right)\left(y-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-5,y-7.
y^{2}-10y+21=\left(y-5\right)\left(y-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te y-7 ki te y-3 ka whakakotahi i ngā kupu rite.
y^{2}-10y+21=y^{2}-6y+5
Whakamahia te āhuatanga tuaritanga hei whakarea te y-5 ki te y-1 ka whakakotahi i ngā kupu rite.
y^{2}-10y+21-y^{2}=-6y+5
Tangohia te y^{2} mai i ngā taha e rua.
-10y+21=-6y+5
Pahekotia te y^{2} me -y^{2}, ka 0.
-10y+21+6y=5
Me tāpiri te 6y ki ngā taha e rua.
-4y+21=5
Pahekotia te -10y me 6y, ka -4y.
-4y=5-21
Tangohia te 21 mai i ngā taha e rua.
-4y=-16
Tangohia te 21 i te 5, ka -16.
y=\frac{-16}{-4}
Whakawehea ngā taha e rua ki te -4.
y=4
Whakawehea te -16 ki te -4, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}