Aromātai
\frac{\left(y-2\right)\left(y+4\right)}{y^{2}+3y-175}
Whakaroha
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y-1 ki te \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Tā te mea he rite te tauraro o \frac{\left(y-1\right)\left(y+3\right)}{y+3} me \frac{5}{y+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Mahia ngā whakarea i roto o \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Whakakotahitia ngā kupu rite i y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Tuhia te 5\times \frac{-35}{y+3} hei hautanga kotahi.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Tā te mea he rite te tauraro o \frac{y\left(y+3\right)}{y+3} me \frac{5\left(-35\right)}{y+3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Mahia ngā whakarea i roto o y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Whakawehe \frac{y^{2}+2y-8}{y+3} ki te \frac{y^{2}+3y-175}{y+3} mā te whakarea \frac{y^{2}+2y-8}{y+3} ki te tau huripoki o \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Me whakakore tahi te y+3 i te taurunga me te tauraro.
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y-1 ki te \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Tā te mea he rite te tauraro o \frac{\left(y-1\right)\left(y+3\right)}{y+3} me \frac{5}{y+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Mahia ngā whakarea i roto o \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Whakakotahitia ngā kupu rite i y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Tuhia te 5\times \frac{-35}{y+3} hei hautanga kotahi.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Tā te mea he rite te tauraro o \frac{y\left(y+3\right)}{y+3} me \frac{5\left(-35\right)}{y+3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Mahia ngā whakarea i roto o y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Whakawehe \frac{y^{2}+2y-8}{y+3} ki te \frac{y^{2}+3y-175}{y+3} mā te whakarea \frac{y^{2}+2y-8}{y+3} ki te tau huripoki o \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Me whakakore tahi te y+3 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}