Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y-1 ki te \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Tā te mea he rite te tauraro o \frac{\left(y-1\right)\left(y+3\right)}{y+3} me \frac{5}{y+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Mahia ngā whakarea i roto o \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Whakakotahitia ngā kupu rite i y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Tuhia te 5\times \frac{-35}{y+3} hei hautanga kotahi.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Tā te mea he rite te tauraro o \frac{y\left(y+3\right)}{y+3} me \frac{5\left(-35\right)}{y+3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Mahia ngā whakarea i roto o y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Whakawehe \frac{y^{2}+2y-8}{y+3} ki te \frac{y^{2}+3y-175}{y+3} mā te whakarea \frac{y^{2}+2y-8}{y+3} ki te tau huripoki o \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Me whakakore tahi te y+3 i te taurunga me te tauraro.
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y-1 ki te \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Tā te mea he rite te tauraro o \frac{\left(y-1\right)\left(y+3\right)}{y+3} me \frac{5}{y+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Mahia ngā whakarea i roto o \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Whakakotahitia ngā kupu rite i y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Tuhia te 5\times \frac{-35}{y+3} hei hautanga kotahi.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Tā te mea he rite te tauraro o \frac{y\left(y+3\right)}{y+3} me \frac{5\left(-35\right)}{y+3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Mahia ngā whakarea i roto o y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Whakawehe \frac{y^{2}+2y-8}{y+3} ki te \frac{y^{2}+3y-175}{y+3} mā te whakarea \frac{y^{2}+2y-8}{y+3} ki te tau huripoki o \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Me whakakore tahi te y+3 i te taurunga me te tauraro.