Whakaoti mō y
y = -\frac{17}{7} = -2\frac{3}{7} \approx -2.428571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(y-1\right)-12=3\left(3y+1\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2y-2-12=3\left(3y+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
2y-14=3\left(3y+1\right)
Tangohia te 12 i te -2, ka -14.
2y-14=9y+3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3y+1.
2y-14-9y=3
Tangohia te 9y mai i ngā taha e rua.
-7y-14=3
Pahekotia te 2y me -9y, ka -7y.
-7y=3+14
Me tāpiri te 14 ki ngā taha e rua.
-7y=17
Tāpirihia te 3 ki te 14, ka 17.
y=\frac{17}{-7}
Whakawehea ngā taha e rua ki te -7.
y=-\frac{17}{7}
Ka taea te hautanga \frac{17}{-7} te tuhi anō ko -\frac{17}{7} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}