Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{3y}{3}-\frac{y-3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{3}{3}.
\frac{\frac{3y-\left(y-3\right)}{3}}{\frac{4}{9}+\frac{2}{3y}}
Tā te mea he rite te tauraro o \frac{3y}{3} me \frac{y-3}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3y-y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Mahia ngā whakarea i roto o 3y-\left(y-3\right).
\frac{\frac{2y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Whakakotahitia ngā kupu rite i 3y-y+3.
\frac{\frac{2y+3}{3}}{\frac{4y}{9y}+\frac{2\times 3}{9y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 3y ko 9y. Whakareatia \frac{4}{9} ki te \frac{y}{y}. Whakareatia \frac{2}{3y} ki te \frac{3}{3}.
\frac{\frac{2y+3}{3}}{\frac{4y+2\times 3}{9y}}
Tā te mea he rite te tauraro o \frac{4y}{9y} me \frac{2\times 3}{9y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{2y+3}{3}}{\frac{4y+6}{9y}}
Mahia ngā whakarea i roto o 4y+2\times 3.
\frac{\left(2y+3\right)\times 9y}{3\left(4y+6\right)}
Whakawehe \frac{2y+3}{3} ki te \frac{4y+6}{9y} mā te whakarea \frac{2y+3}{3} ki te tau huripoki o \frac{4y+6}{9y}.
\frac{3y\left(2y+3\right)}{4y+6}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{3y\left(2y+3\right)}{2\left(2y+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3y}{2}
Me whakakore tahi te 2y+3 i te taurunga me te tauraro.
\frac{\frac{3y}{3}-\frac{y-3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{3}{3}.
\frac{\frac{3y-\left(y-3\right)}{3}}{\frac{4}{9}+\frac{2}{3y}}
Tā te mea he rite te tauraro o \frac{3y}{3} me \frac{y-3}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3y-y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Mahia ngā whakarea i roto o 3y-\left(y-3\right).
\frac{\frac{2y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Whakakotahitia ngā kupu rite i 3y-y+3.
\frac{\frac{2y+3}{3}}{\frac{4y}{9y}+\frac{2\times 3}{9y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 3y ko 9y. Whakareatia \frac{4}{9} ki te \frac{y}{y}. Whakareatia \frac{2}{3y} ki te \frac{3}{3}.
\frac{\frac{2y+3}{3}}{\frac{4y+2\times 3}{9y}}
Tā te mea he rite te tauraro o \frac{4y}{9y} me \frac{2\times 3}{9y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{2y+3}{3}}{\frac{4y+6}{9y}}
Mahia ngā whakarea i roto o 4y+2\times 3.
\frac{\left(2y+3\right)\times 9y}{3\left(4y+6\right)}
Whakawehe \frac{2y+3}{3} ki te \frac{4y+6}{9y} mā te whakarea \frac{2y+3}{3} ki te tau huripoki o \frac{4y+6}{9y}.
\frac{3y\left(2y+3\right)}{4y+6}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{3y\left(2y+3\right)}{2\left(2y+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3y}{2}
Me whakakore tahi te 2y+3 i te taurunga me te tauraro.