Whakaoti mō a
a=-k+\frac{y}{x}
x\neq 0
Whakaoti mō k
k=-a+\frac{y}{x}
x\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-kx=ax
Whakareatia ngā taha e rua o te whārite ki te x.
ax=y-kx
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
xa=y-kx
He hanga arowhānui tō te whārite.
\frac{xa}{x}=\frac{y-kx}{x}
Whakawehea ngā taha e rua ki te x.
a=\frac{y-kx}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
a=-k+\frac{y}{x}
Whakawehe y-xk ki te x.
y-kx=ax
Whakareatia ngā taha e rua o te whārite ki te x.
-kx=ax-y
Tangohia te y mai i ngā taha e rua.
\left(-x\right)k=ax-y
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)k}{-x}=\frac{ax-y}{-x}
Whakawehea ngā taha e rua ki te -x.
k=\frac{ax-y}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
k=-a+\frac{y}{x}
Whakawehe ax-y ki te -x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}