Aromātai
\frac{y-6}{12\left(y+3\right)}
Tauwehe
\frac{y-6}{12\left(y+3\right)}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{y}{12\left(y+3\right)}-\frac{3}{6\left(y+3\right)}
Tauwehea te 12y+36. Tauwehea te 6y+18.
\frac{y}{12\left(y+3\right)}-\frac{3\times 2}{12\left(y+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12\left(y+3\right) me 6\left(y+3\right) ko 12\left(y+3\right). Whakareatia \frac{3}{6\left(y+3\right)} ki te \frac{2}{2}.
\frac{y-3\times 2}{12\left(y+3\right)}
Tā te mea he rite te tauraro o \frac{y}{12\left(y+3\right)} me \frac{3\times 2}{12\left(y+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{y-6}{12\left(y+3\right)}
Mahia ngā whakarea i roto o y-3\times 2.
\frac{y-6}{12y+36}
Whakarohaina te 12\left(y+3\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}