Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{y}{12\left(y+3\right)}-\frac{3}{6\left(y+3\right)}
Tauwehea te 12y+36. Tauwehea te 6y+18.
\frac{y}{12\left(y+3\right)}-\frac{3\times 2}{12\left(y+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12\left(y+3\right) me 6\left(y+3\right) ko 12\left(y+3\right). Whakareatia \frac{3}{6\left(y+3\right)} ki te \frac{2}{2}.
\frac{y-3\times 2}{12\left(y+3\right)}
Tā te mea he rite te tauraro o \frac{y}{12\left(y+3\right)} me \frac{3\times 2}{12\left(y+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{y-6}{12\left(y+3\right)}
Mahia ngā whakarea i roto o y-3\times 2.
\frac{y-6}{12y+36}
Whakarohaina te 12\left(y+3\right).