Whakaoti mō y
y = \frac{6 \sqrt{374}}{11} \approx 10.548588876
y = -\frac{6 \sqrt{374}}{11} \approx -10.548588876
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { y ^ { 2 } - 9 } { 25 } - \frac { y ^ { 2 } } { 36 } = 1
Tohaina
Kua tāruatia ki te papatopenga
36\left(y^{2}-9\right)-25y^{2}=900
Me whakarea ngā taha e rua o te whārite ki te 900, arā, te tauraro pātahi he tino iti rawa te kitea o 25,36.
36y^{2}-324-25y^{2}=900
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te y^{2}-9.
11y^{2}-324=900
Pahekotia te 36y^{2} me -25y^{2}, ka 11y^{2}.
11y^{2}=900+324
Me tāpiri te 324 ki ngā taha e rua.
11y^{2}=1224
Tāpirihia te 900 ki te 324, ka 1224.
y^{2}=\frac{1224}{11}
Whakawehea ngā taha e rua ki te 11.
y=\frac{6\sqrt{374}}{11} y=-\frac{6\sqrt{374}}{11}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
36\left(y^{2}-9\right)-25y^{2}=900
Me whakarea ngā taha e rua o te whārite ki te 900, arā, te tauraro pātahi he tino iti rawa te kitea o 25,36.
36y^{2}-324-25y^{2}=900
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te y^{2}-9.
11y^{2}-324=900
Pahekotia te 36y^{2} me -25y^{2}, ka 11y^{2}.
11y^{2}-324-900=0
Tangohia te 900 mai i ngā taha e rua.
11y^{2}-1224=0
Tangohia te 900 i te -324, ka -1224.
y=\frac{0±\sqrt{0^{2}-4\times 11\left(-1224\right)}}{2\times 11}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 11 mō a, 0 mō b, me -1224 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 11\left(-1224\right)}}{2\times 11}
Pūrua 0.
y=\frac{0±\sqrt{-44\left(-1224\right)}}{2\times 11}
Whakareatia -4 ki te 11.
y=\frac{0±\sqrt{53856}}{2\times 11}
Whakareatia -44 ki te -1224.
y=\frac{0±12\sqrt{374}}{2\times 11}
Tuhia te pūtakerua o te 53856.
y=\frac{0±12\sqrt{374}}{22}
Whakareatia 2 ki te 11.
y=\frac{6\sqrt{374}}{11}
Nā, me whakaoti te whārite y=\frac{0±12\sqrt{374}}{22} ina he tāpiri te ±.
y=-\frac{6\sqrt{374}}{11}
Nā, me whakaoti te whārite y=\frac{0±12\sqrt{374}}{22} ina he tango te ±.
y=\frac{6\sqrt{374}}{11} y=-\frac{6\sqrt{374}}{11}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}