Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36\left(y^{2}-9\right)-25y^{2}=900
Me whakarea ngā taha e rua o te whārite ki te 900, arā, te tauraro pātahi he tino iti rawa te kitea o 25,36.
36y^{2}-324-25y^{2}=900
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te y^{2}-9.
11y^{2}-324=900
Pahekotia te 36y^{2} me -25y^{2}, ka 11y^{2}.
11y^{2}=900+324
Me tāpiri te 324 ki ngā taha e rua.
11y^{2}=1224
Tāpirihia te 900 ki te 324, ka 1224.
y^{2}=\frac{1224}{11}
Whakawehea ngā taha e rua ki te 11.
y=\frac{6\sqrt{374}}{11} y=-\frac{6\sqrt{374}}{11}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
36\left(y^{2}-9\right)-25y^{2}=900
Me whakarea ngā taha e rua o te whārite ki te 900, arā, te tauraro pātahi he tino iti rawa te kitea o 25,36.
36y^{2}-324-25y^{2}=900
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te y^{2}-9.
11y^{2}-324=900
Pahekotia te 36y^{2} me -25y^{2}, ka 11y^{2}.
11y^{2}-324-900=0
Tangohia te 900 mai i ngā taha e rua.
11y^{2}-1224=0
Tangohia te 900 i te -324, ka -1224.
y=\frac{0±\sqrt{0^{2}-4\times 11\left(-1224\right)}}{2\times 11}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 11 mō a, 0 mō b, me -1224 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 11\left(-1224\right)}}{2\times 11}
Pūrua 0.
y=\frac{0±\sqrt{-44\left(-1224\right)}}{2\times 11}
Whakareatia -4 ki te 11.
y=\frac{0±\sqrt{53856}}{2\times 11}
Whakareatia -44 ki te -1224.
y=\frac{0±12\sqrt{374}}{2\times 11}
Tuhia te pūtakerua o te 53856.
y=\frac{0±12\sqrt{374}}{22}
Whakareatia 2 ki te 11.
y=\frac{6\sqrt{374}}{11}
Nā, me whakaoti te whārite y=\frac{0±12\sqrt{374}}{22} ina he tāpiri te ±.
y=-\frac{6\sqrt{374}}{11}
Nā, me whakaoti te whārite y=\frac{0±12\sqrt{374}}{22} ina he tango te ±.
y=\frac{6\sqrt{374}}{11} y=-\frac{6\sqrt{374}}{11}
Kua oti te whārite te whakatau.