Whakaoti mō x
x=-\frac{y+7}{3-y}
y\neq 3
Whakaoti mō y
y=-\frac{3x+7}{1-x}
x\neq 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+7=x\left(y-3\right)
Whakareatia ngā taha e rua o te whārite ki te y-3.
y+7=xy-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te y-3.
xy-3x=y+7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(y-3\right)x=y+7
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(y-3\right)x}{y-3}=\frac{y+7}{y-3}
Whakawehea ngā taha e rua ki te y-3.
x=\frac{y+7}{y-3}
Mā te whakawehe ki te y-3 ka wetekia te whakareanga ki te y-3.
y+7=x\left(y-3\right)
Tē taea kia ōrite te tāupe y ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y-3.
y+7=xy-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te y-3.
y+7-xy=-3x
Tangohia te xy mai i ngā taha e rua.
y-xy=-3x-7
Tangohia te 7 mai i ngā taha e rua.
\left(1-x\right)y=-3x-7
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(1-x\right)y}{1-x}=\frac{-3x-7}{1-x}
Whakawehea ngā taha e rua ki te 1-x.
y=\frac{-3x-7}{1-x}
Mā te whakawehe ki te 1-x ka wetekia te whakareanga ki te 1-x.
y=-\frac{3x+7}{1-x}
Whakawehe -3x-7 ki te 1-x.
y=-\frac{3x+7}{1-x}\text{, }y\neq 3
Tē taea kia ōrite te tāupe y ki 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}