Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-xy}{x^{2}+xy}\times \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy}
Pahekotia te xy me -2xy, ka -xy.
\frac{-xy}{x\left(x+y\right)}\times \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-xy}{x^{2}+xy}.
\frac{-y}{x+y}\times \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-y\left(x^{2}+2xy+y^{2}\right)}{\left(x+y\right)\left(x^{2}-2xy\right)}
Me whakarea te \frac{-y}{x+y} ki te \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-y\left(x+y\right)^{2}}{x\left(x+y\right)\left(x-2y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-y\left(x+y\right)}{x\left(x-2y\right)}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{-xy-y^{2}}{x^{2}-2xy}
Me whakaroha te kīanga.
\frac{-xy}{x^{2}+xy}\times \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy}
Pahekotia te xy me -2xy, ka -xy.
\frac{-xy}{x\left(x+y\right)}\times \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-xy}{x^{2}+xy}.
\frac{-y}{x+y}\times \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-y\left(x^{2}+2xy+y^{2}\right)}{\left(x+y\right)\left(x^{2}-2xy\right)}
Me whakarea te \frac{-y}{x+y} ki te \frac{x^{2}+2xy+y^{2}}{x^{2}-2xy} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-y\left(x+y\right)^{2}}{x\left(x+y\right)\left(x-2y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-y\left(x+y\right)}{x\left(x-2y\right)}
Me whakakore tahi te x+y i te taurunga me te tauraro.
\frac{-xy-y^{2}}{x^{2}-2xy}
Me whakaroha te kīanga.