Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{xy}{x-y}\left(\frac{xx}{xy}-\frac{yy}{xy}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y me x ko xy. Whakareatia \frac{x}{y} ki te \frac{x}{x}. Whakareatia \frac{y}{x} ki te \frac{y}{y}.
\frac{xy}{x-y}\times \frac{xx-yy}{xy}
Tā te mea he rite te tauraro o \frac{xx}{xy} me \frac{yy}{xy}, me tango rāua mā te tango i ō raua taurunga.
\frac{xy}{x-y}\times \frac{x^{2}-y^{2}}{xy}
Mahia ngā whakarea i roto o xx-yy.
\frac{xy\left(x^{2}-y^{2}\right)}{\left(x-y\right)xy}
Me whakarea te \frac{xy}{x-y} ki te \frac{x^{2}-y^{2}}{xy} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}-y^{2}}{x-y}
Me whakakore tahi te xy i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x-y\right)}{x-y}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
x+y
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{xy}{x-y}\left(\frac{xx}{xy}-\frac{yy}{xy}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y me x ko xy. Whakareatia \frac{x}{y} ki te \frac{x}{x}. Whakareatia \frac{y}{x} ki te \frac{y}{y}.
\frac{xy}{x-y}\times \frac{xx-yy}{xy}
Tā te mea he rite te tauraro o \frac{xx}{xy} me \frac{yy}{xy}, me tango rāua mā te tango i ō raua taurunga.
\frac{xy}{x-y}\times \frac{x^{2}-y^{2}}{xy}
Mahia ngā whakarea i roto o xx-yy.
\frac{xy\left(x^{2}-y^{2}\right)}{\left(x-y\right)xy}
Me whakarea te \frac{xy}{x-y} ki te \frac{x^{2}-y^{2}}{xy} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}-y^{2}}{x-y}
Me whakakore tahi te xy i te taurunga me te tauraro.
\frac{\left(x+y\right)\left(x-y\right)}{x-y}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
x+y
Me whakakore tahi te x-y i te taurunga me te tauraro.