Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+y me x-y ko \left(x+y\right)\left(x-y\right). Whakareatia \frac{x-y}{x+y} ki te \frac{x-y}{x-y}. Whakareatia \frac{x+y}{x-y} ki te \frac{x+y}{x+y}.
\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Tā te mea he rite te tauraro o \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} me \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Mahia ngā whakarea i roto o \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{-4xy}{\left(x+y\right)\left(x-y\right)}
Whakakotahitia ngā kupu rite i x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy}{x^{2}-y^{2}}
Whakarohaina te \left(x+y\right)\left(x-y\right).
\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+y me x-y ko \left(x+y\right)\left(x-y\right). Whakareatia \frac{x-y}{x+y} ki te \frac{x-y}{x-y}. Whakareatia \frac{x+y}{x-y} ki te \frac{x+y}{x+y}.
\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Tā te mea he rite te tauraro o \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} me \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Mahia ngā whakarea i roto o \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{-4xy}{\left(x+y\right)\left(x-y\right)}
Whakakotahitia ngā kupu rite i x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy}{x^{2}-y^{2}}
Whakarohaina te \left(x+y\right)\left(x-y\right).