Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-5+4\left(x+4\right)=4\left(x+6\right)-\left(x-7\right)-2\left(x+6\right)
Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 8,2,4.
x-5+4x+16=4\left(x+6\right)-\left(x-7\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+4.
5x-5+16=4\left(x+6\right)-\left(x-7\right)-2\left(x+6\right)
Pahekotia te x me 4x, ka 5x.
5x+11=4\left(x+6\right)-\left(x-7\right)-2\left(x+6\right)
Tāpirihia te -5 ki te 16, ka 11.
5x+11=4x+24-\left(x-7\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+6.
5x+11=4x+24-x-\left(-7\right)-2\left(x+6\right)
Hei kimi i te tauaro o x-7, kimihia te tauaro o ia taurangi.
5x+11=4x+24-x+7-2\left(x+6\right)
Ko te tauaro o -7 ko 7.
5x+11=3x+24+7-2\left(x+6\right)
Pahekotia te 4x me -x, ka 3x.
5x+11=3x+31-2\left(x+6\right)
Tāpirihia te 24 ki te 7, ka 31.
5x+11=3x+31-2x-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+6.
5x+11=x+31-12
Pahekotia te 3x me -2x, ka x.
5x+11=x+19
Tangohia te 12 i te 31, ka 19.
5x+11-x=19
Tangohia te x mai i ngā taha e rua.
4x+11=19
Pahekotia te 5x me -x, ka 4x.
4x=19-11
Tangohia te 11 mai i ngā taha e rua.
4x=8
Tangohia te 11 i te 19, ka 8.
x=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
x=2
Whakawehea te 8 ki te 4, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}