Whakaoti mō x
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x-2\right)\left(x-4\right)+x+7=\left(3x-2\right)\left(x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -7,\frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3x-2\right)\left(x+7\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+7,3x-2.
3x^{2}-14x+8+x+7=\left(3x-2\right)\left(x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-2 ki te x-4 ka whakakotahi i ngā kupu rite.
3x^{2}-13x+8+7=\left(3x-2\right)\left(x-2\right)
Pahekotia te -14x me x, ka -13x.
3x^{2}-13x+15=\left(3x-2\right)\left(x-2\right)
Tāpirihia te 8 ki te 7, ka 15.
3x^{2}-13x+15=3x^{2}-8x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-2 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-13x+15-3x^{2}=-8x+4
Tangohia te 3x^{2} mai i ngā taha e rua.
-13x+15=-8x+4
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
-13x+15+8x=4
Me tāpiri te 8x ki ngā taha e rua.
-5x+15=4
Pahekotia te -13x me 8x, ka -5x.
-5x=4-15
Tangohia te 15 mai i ngā taha e rua.
-5x=-11
Tangohia te 15 i te 4, ka -11.
x=\frac{-11}{-5}
Whakawehea ngā taha e rua ki te -5.
x=\frac{11}{5}
Ka taea te hautanga \frac{-11}{-5} te whakamāmā ki te \frac{11}{5} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}