Whakaoti mō x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { x - 4 } { x + 3 } = \frac { x - 3 } { x + 1 }
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\left(x-4\right)=\left(x+3\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+3,x+1.
x^{2}-3x-4=\left(x+3\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x-4 ka whakakotahi i ngā kupu rite.
x^{2}-3x-4=x^{2}-9
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-3x-4-x^{2}=-9
Tangohia te x^{2} mai i ngā taha e rua.
-3x-4=-9
Pahekotia te x^{2} me -x^{2}, ka 0.
-3x=-9+4
Me tāpiri te 4 ki ngā taha e rua.
-3x=-5
Tāpirihia te -9 ki te 4, ka -5.
x=\frac{-5}{-3}
Whakawehea ngā taha e rua ki te -3.
x=\frac{5}{3}
Ka taea te hautanga \frac{-5}{-3} te whakamāmā ki te \frac{5}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}