Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+1\right)\left(x-4\right)=\left(x+3\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+3,x+1.
x^{2}-3x-4=\left(x+3\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x-4 ka whakakotahi i ngā kupu rite.
x^{2}-3x-4=x^{2}-9
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-3x-4-x^{2}=-9
Tangohia te x^{2} mai i ngā taha e rua.
-3x-4=-9
Pahekotia te x^{2} me -x^{2}, ka 0.
-3x=-9+4
Me tāpiri te 4 ki ngā taha e rua.
-3x=-5
Tāpirihia te -9 ki te 4, ka -5.
x=\frac{-5}{-3}
Whakawehea ngā taha e rua ki te -3.
x=\frac{5}{3}
Ka taea te hautanga \frac{-5}{-3} te whakamāmā ki te \frac{5}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.