Whakaoti mō x
x = \frac{21}{4} = 5\frac{1}{4} = 5.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-4+4\left(x+1\right)=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 8,2,4.
x-4+4x+4=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
5x-4+4=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Pahekotia te x me 4x, ka 5x.
5x=4\left(x+7\right)-\left(x-5\right)-2\left(x+6\right)
Tāpirihia te -4 ki te 4, ka 0.
5x=4x+28-\left(x-5\right)-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+7.
5x=4x+28-x-\left(-5\right)-2\left(x+6\right)
Hei kimi i te tauaro o x-5, kimihia te tauaro o ia taurangi.
5x=4x+28-x+5-2\left(x+6\right)
Ko te tauaro o -5 ko 5.
5x=3x+28+5-2\left(x+6\right)
Pahekotia te 4x me -x, ka 3x.
5x=3x+33-2\left(x+6\right)
Tāpirihia te 28 ki te 5, ka 33.
5x=3x+33-2x-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+6.
5x=x+33-12
Pahekotia te 3x me -2x, ka x.
5x=x+21
Tangohia te 12 i te 33, ka 21.
5x-x=21
Tangohia te x mai i ngā taha e rua.
4x=21
Pahekotia te 5x me -x, ka 4x.
x=\frac{21}{4}
Whakawehea ngā taha e rua ki te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}